

Cross Pairwise Ranking for Unbiased Item Recommendation

Qi Wan, Xiangnan He, Xiang Wang, Jiancan Wu, Wei Guo, Ruiming Tang wqq17@mail.ustc.edu.cn

Popularity Bias in Recommender Systems

Observed Interactions

 affected by previous
 exposure mechanism,
 biased towards
 (clicks, purchases, ...)
 popular items

Recommender trained without consideration of data bias further amplifies the bias

• Non-uniform Exposure Brings the Bias

Binary variables

 $> Y_{u,i}$: interaction; $R_{u,i}$: relevance; $O_{u,i}$: observation

$$egin{aligned} P(Y_{u,i}=1) &= P(R_{u,i}=1,O_{u,i}=1) \ &= P(R_{u,i}=1)P(O_{u,i}=1\mid R_{u,i}=1) \end{aligned}$$

interaction probability relevance probability exposure probability generally higher for popular items

Popular items dominate training

Mainstream Debiasing Method

Inverse Propensity Scoring (IPS)

- Reweight samples with estimated propensity scores
 - \blacktriangleright Unknown exposure mechanism \rightarrow Propensities difficult to estimate
- > Aiming to achieve an unbiased expectation of loss
 - \succ Large variance of loss \rightarrow expectation-variance trade-off

Definition of Unbiasedness

- \succ True relevance score $s_{u,i} = \ln P(R_{u,i} = 1)$
- \succ Predicted relevance score $\hat{s}_{u,i}$

Define unbiasedness from ranking perspective:

A loss function L is unbiased if it optimizes the ranking of predicted user-item relevance scores towards that of the true relevance scores:

 $\hat{s}_{u,i} > \hat{s}_{u,j} \Leftrightarrow s_{u,i} > s_{u,j} ext{ when } \mathcal{L} ext{ converges.}$

Biasedness of Pointwise and Pairwise Loss

The full proof can be found in our paper. 5

• Our Solution: Cross Pairwise Ranking Loss

Select two positive user-item pairs (u_1, i_1) and (u_2, i_1) , such that (u_1, i_2) and (u_2, i_1) are negative pairs

$$\mathcal{L}_{CPR} = - \sum_{(u_1, u_2, i_1, i_2) \in \mathcal{D}_2} \ln \sigma igg[rac{1}{2} (\hat{s}_{u_1, i_1} + \hat{s}_{u_2, i_2} - \hat{s}_{u_1, i_2} - \hat{s}_{u_2, i_1}) igg]$$

 $\mathcal{D}_2 = \{(u_1, u_2, i_1, i_2) \mid Y_{u_1, i_1} = 1, Y_{u_2, i_2} = 1, Y_{u_1, i_2} = 0, Y_{u_2, i_1} = 0\}$

$$\hat{s}_{u_1,i_1} + \hat{s}_{u_2,i_2} - \hat{s}_{u_1,i_2} - \hat{s}_{u_2,i_1} > 0 \ ext{if } Y_{u_1,i_1} = 1, Y_{u_2,i_2} = 1, Y_{u_1,i_2} = 0, Y_{u_2,i_1} = 0$$

Unbiasedness of CPR Loss

Extending to More Interactions

Dynamic Sampling

Goal: Speed up the training & Improve the performance.

> Inspired by DNS []], select harder samples with higher probabilities.

$$\blacktriangleright$$
 For a sample $S_j = (u_1, \ldots, u_k, i_1, \ldots, i_k)$, measure its difficulty by

$$O_j = rac{1}{k} \cdot (\hat{s}_{u_1,i_1} + \hat{s}_{u_2,i_2} + \dots + \hat{s}_{u_k,i_k} - \hat{s}_{u_1,i_2} - \hat{s}_{u_2,i_3} - \dots - \hat{s}_{u_k,i_1})$$

 \succ Dynamic sampling rate β ≥ 1

=

> Only use the hardest $\frac{1}{\beta}$ of selected data as training samples

Experimental Settings

- MovieLens-IOM, Netflix Prize and Alibaba iFashion
- > Create simulated unbiased data by lowering the sampling rate of popular items \rightarrow Validation / Testing set
- Evaluation metrics:
 - > Overall: Recall@K, NDCG@K
 - Biasedness: ARP@K (Average Recommendation Popularity)
- Baselines
 - Traditional: BPR, Mult-VAE
 - Debiasing: CausE, Rel-MF, UBPR, DICE

Overall Comparison

	Method	Backbone	MovieLens			Netflix			iFashion		
	methou	Duckbone	Recall	NDCG	ARP	Recall	NDCG	ARP	Recall	NDCG	ARP
	BPR	MF	0.1579	0.0939	4084	0.1255	0.0952	3341	0.0278	0.0122	436
	Mult-VAE	-	0.1676	0.1004	4468	0.1242	0.0921	3554	<u>0.0309</u>	<u>0.0142</u>	415
	Debiasing approaches:										
Without dynamic sampling	CausE	MF	0.1440	0.0805	3814	0.1080	0.0730	3206	0.0214	0.0094	408
	Rel-MF		0.1463	0.0829	4107	0.1138	0.0765	3254	0.0250	0.0113	421
	UBPR		0.1682	0.1000	2691	0.1315	0.1007	2289	0.0281	0.0126	404
	DICE		0.1835	<u>0.1101</u>	<u>1173</u>	<u>0.1317</u>	<u>0.1007</u>	<u>1244</u>	0.0275	0.0124	<u>250</u>
	CPR-rand CPR	MF	0.1938 0.2003*	0.1192 0.1223*	1055 1138	0.1462 0.1511*	0.1143 0.1190*	1270 1204	0.0307 0.0332*	0.0137 0.0151*	398 359
	%Improv.		9.16%	11.08%	-	14.73%	18.17%	-	7.44%	6.34%	-

- CPR-rand beats all the baselines on MovieLens and Netflix, achieves better overall performance on iFashion
- > CPR further improves performances on all datasets

• Training Efficiency

- Recall curves
 - CPR converges to the best performance with the least number of epochs

 Total training time
 CPR takes much less time compared with the strongest baseline DICE

Debiasing Ability

- ➢ Four groups of item −
 - sort items by their degrees in the ascending order, and group them such that the sum degrees in each group are approximately equal
 - Lines: the percentage of degrees contained in each group
 - Columns: the percentage of the recommended items of each group

Generalization Ability

Performances w.r.t. different backbones

Performances w.r.t. different degrees of bias

Method	Backbone	MovieLens		Netflix			Mathad	MovieLens		Netflix	
		Recall	NDCG	Recall	NDCG	θ.	Method	Recall	NDCG	Recall	NDCG
BPR DICE CPR	LightGCN	0.1661 0.1864 0.1963	0.0995 0.1121 0.1210	0.1310 0.1355 0.1502	0.0985 0.1043 0.1180	bias 0.5 amplified	BPR DICE	0.1217 0.1461	0.0679 0.0839	0.0939 0.1048	0.0654
BPR DICE CPR	NeuMF	0.1519 0.1568 0.1895	0.0890 0.0914 0.1155	0.1254 0.1126 0.1434	0.0932 0.0841 0.1109	bias _{-0.5} reduced	BPR DICE CPR	0.1413 0.1597 0.1737	0.0809 0.0956 0.1040	0.1086 0.1133 0.1274	0.0777 0.0858 0.0965
BPR DICE CPR	NGCF	0.1615 0.1774 0.1952	0.0951 0.1071 0.1182	0.1199 0.1312 0.1498	0.0899 0.0999 0.1173	- 					

> CPR consistently performs better than baselines

Conclusion & Future Work

- Analyze the biasedness of mainstream loss functions from a new perspective, showing that they optimize recommendations towards a biased ranking of user preference
- Propose a new unbiased method CPR
- Future work
 - > a more general assumption of exposure probability
 - > extend CPR to other scenarios, like alleviating the group fairness bias

Thank you!

Codes and Datasets available at https://github.com/Qcactus/CPR